

X-band Radar Sea-clutter Measurements from Low-Medium Grazing Angles Recorded from a Helicopter Platform

SET-239 Specialists Meeting Edinburgh 25-26 Oct. 2016

Terje Johnsen, Nina Ødegaard and Atle Onar Knapskog FFI

Content

- PicoSAR radar from SELEX
- Collection strategy and trials
 - Circular flights
 - Vertical climbing flights
- Data extraction
- Analysis
 - Sea conditions, Very low -> High
 - Reflectivity (azimuth and grazing angle)
 - Fitting data to a K-distribution
 - Doppler spectrum

PicoSAR Lightweight 10kg Synthetic Aperture Radar (SAR)

Masurement parameter settings

Forsvarets forskningsinstitutt

Frequency	X-band (9.4 GHz)
Chirp bandwidth	150 MHz
Range gate resolution	~1m (slant range)
Range (scene centre)	1850m
Pulse length	12 μs
PRF	1 kHz
Raw range cells	574
Beam width (3dB)	EI = 9, Az = 6
Range gate az. width	~200m
Range gate size	1m x 200m
Polarization	Vertical

Sea-clutter trials

Recordings in the Mediterranean Sea
NATO NEMO Trial 2013, Toulon France
NATO NEMO Trial 2014, Taranto Italy

Toulon, Frankrike

Taranto bay, Italy

Data extraction

- Using Advanced mode settings
 - No use of predefined SAR modes
 - Shorter ranges
- Detailed parameter control
 - Chirp bandwidth
 - Pulse length
 - PRF
 - Sampling starting offset
 - Sample window
- Fixed range = 1850m
- Grazing angle up to 56 degrees
 - Restricted height

Pointing angle

- Fixed range
- Circular flights at set at grazing angles
 - Fixed height
- Steeper pointing angle
 - Range gates outside main beam

- Lower pointing angle
 - Range gates outside main beam

Data extraction

• Example of antenna beam pointing (Abscissa: 100k pulses = 100s)

FFF Forsvarets forskningsinstitutt

Antenna beam range gate coverage (100k pulses = 100s)

• Discard range gates outside from contaminating the analysis

Forsvarets forskningsinstitutt

Radar antenna beam

- Beam width, 3dB
 - Elevation = 9 degrees
 - Azimuth = 6 degrees
- Beam position: Boresight
 - No azimuth squinting

- Data
 - Input: Sampled deramped IQ-data
 - Pulse by pulse
 - Range gate by range gate
- Compensating

kningsinstitutt

- Clutter patch width(r,α)
- Range gate size(r, α)
- Gain (el. angle in beam)

NATO NEMO Trial 2013

- Circular flight experiment
 - Grazing angle: 5, 10, 15, 20, and 25 degrees
- High wind speed

Wind direction

- Short fetch "Young sea"
- Swell

Azimuth & Grazing angle coverage

FFF Forsvarets forskningsinstitutt

Relative intensity of sea clutter reflectivity

Fitting reflectivity data

Compound K-distribution

 $p(x) = \frac{2c}{\Gamma(v)} \left(\frac{cx}{2}\right)^{v} K_{v-1}(cx)$

- Method of Moments (MoM)
 - Estimate shape parameter v
 - Second moment

$$\overline{x^2} = \frac{4\nu}{c^2}$$

- Small v -> Long-tailed dist.
- Large v -> Rayleigh
- Weak trend: Median ν increases with grazing angle

Mean Doppler spectrum width

Recorded sea spectrum: Convolution of response from sea and antenna pattern

Experimental data

$$f_d = 2v \frac{f_c}{c} \sin \varphi_a \cos \theta_g$$

- Doppler shift due to antenna pattern
 - Velocity differs
 - Up, down and cross
 - Half beamwidth
 - 3dB crossing

Forsvarets forskningsinstitutt

Doppler spectrum of sea clutter (300ms, 300 pulses)

FFF Forsvarets forskningsinstitutt

NATO NEMO 2014 Trial (Taranto bay)

- Vertical climb flights
 - Upwind
 - Small lateral movement
- Fetch 20km
 - Young sea
- Grazing angles

 [3 55] deg
- Day 1
 10-12 m/s
- Day 2
 1-2 m/s

Upwind pointing variation and sea condition

Range-Doppler spectrum (300ms, 300 pulses)

Day 1
 10-12 m/s

- Day 2
- 1-2 m/s

C:\PicoSAR_trials\20140924_italia_onsdag\bbox\20140924_Fixed_150_09.59.38_10.01.16.bin Pulse index: 83301 to 84300, Az: 357(N), Gr: 6

Reflectivity versus grazing angle

• Upwind

Summary

- PicoSAR sea clutter data
- Analyzed radar sea clutter from two trials
 - Short fetch (≈20km)
 - Low and high wind conditions
- Circular flights

kningsinstitutt

- Reflectivity angle dependencies
- Trend of increasing shape parameter with grazing angle
- Vertical climbing flights
 - Reflectivity data shows good correspondence with modeled data as a function of grazing angle
 - Doppler spectra showing variations in Doppler excursions

Range-Doppler spectrum (300ms, 300 pulses)

- Low wind
- Grazing ang: 20 deg
- Transition region?
 - Wind no-wind

Sea clutter

• "Footprint" showing wave fronts in range compressed data

- Range gates(time), 5s window

